本文へスキップ

Materials Research Center for Element Strategy, Tokyo Institute of Technology

Major Publications


 

Monographs

1.     H.Hosono, Hideya Kumomi, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, Wiley (2022)

2.     H.Hosono,Y.Mishima,H.Takezoe, K.J.D.Mackenzie, Nanomaterials, Elsevier (2006)

3.     D.Ginley,H.Hosono,D.Paine, Transparent Conductors, Springer (2010)

4.     N.L.Wang,H.Hosono, P.Dai, Iron-Based Superconductors, Pan Stanford (2013)

5.     細野秀雄、神谷利夫、透明金属が拓く驚異の世界、サイエンスアイ新書 (2006)

6.     細野秀雄、好きなことにばかになる、サンマーク出版(2011)

 

Papers

 

1. Iron-based Superconductors

Monograph

N.L.Wang,H.Hosono, P.Dai, Iron-Based Superconductors,Pan Stanford(2013).

Invited Review

1.    H. Hosono, Two classes of superconductors discovered in our material research: Iron-based high temperature superconductor and electride superconductor, Physica C, 469, 314-325 (2009).
Describing a story to discovery of IBSCs I

2.    Hideo Hosono and Kazuhiko Kuroki, Iron-based superconductors: Current status of materials and pairing mechanism, Physica C, 514, 399-422, (2015).

Comprehensive reviews on materials and mechanisms

3.    Hideo Hosono, Akiyasu Yamamoto, Hidenori Hiramatsu, & Yanwei Ma, Recent advances in iron-based superconductors toward applications, Materials today, 21(3), 278-302(2018).

Papers

4.    Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H.Hosono, Iron-based layered superconductor: LaOFeP, J. Am. Chem. Soc., 128, 10012(2006). First paper on Iron-based superconductors (Tc=4K)

5.    Y.Kamihara, T.Watanabe, M. Hirano, and H.Hosono, Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc= 26 K, J. Am. Chem. Soc., 130, 3296 (2008). The most cited paper published in 2008,

6.    H.Takahashi, K.Igawa, K.Arii, Y.Kamihara, M.Hirano, and H.Hosono, Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, Nature, 453 ,376(2008). Tc exceeding MgB2

7.    H. Hiramatsu, T. Katase, T. Kamiya, M. Hirano, and H. Hosono, Superconductivity in Epitaxial Thin Films of Co-Doped SrFe2As2 with Bilayered FeAs Structures and their Magnetic Anisotropy, Appl. Phys. Express 1,101702 (2008). First report on thin film of IBSCs.   Best paper Award by Applied Physics Society of Japan

8.    S. A. Baily, Y. Kohama, H. Hiramatsu, B. Maiorov, F. F. Balakirev, M. Hirano, and H. Hosono, Pseudo-isotropic Upper Critical Field in Cobalt-Doped SrFe2As2 Epitaxial Films, Phys. Rev. Lett. 102,117004(2009). Reporting small anisotropy in Jc and high potential for wire application

9.    T. Katase, Y. Ishimaru, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe, and H. Hosono, Advantageous grain boundaries in iron pnictide superconductors, Nat. Commun. 2,409 (2011). Reporting large critical grain boundary angle to keep high Jc of IRSCs.

10.     S. Iimura, S. Matuishi, H. Sato, T. Hanna, Y. Muraba, S. W. Kim, J. E. Kim, M. Takata, and H. Hosono, Two-dome structure in electron-doped iron arsenide superconductors, Nat. Commun. 3, 943(2012).  Discovery of double Tc-dome structure by heavy electron-doping utilizing H- doping.

11.    M. Hiraishi, S. Iimura, K. M. Kojima, J. Yamaura, H. Hiraka, K. Ikeda, P. Miao, Y. Ishikawa, S. Torii, M. Miyazaki, I. Yamauchi, A. Koda, K. Ishii, M. Yoshida, J. Mizuki, R. Kadono, R. Kumai, T. Kamiyama, T. Otomo, Y. Murakami, S. Matsuishi, and H. Hosono, Bipartite magnetic parent phases in the iron oxypnictide superconductor, Nat. Phys. 10,300(2014). Discovery of two parent phases in IBSCs

 

   2. Oxide Semiconductors

Monograph

H.Hosono, Hideya Kumomi, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, 1-624, Wiley (2022)

Invited Review

1.    H.Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application; J.Non-Cryst. Solids, 352, 851 (2006).

Most cited paper in JNCS. Presented as a plenary talk at ICANS-16

Describing materials design concept of amorphous oxide semiconductors with

2.    H. Hosono, Exploring Electro-active Functionality of Transparent Oxide Materials, Jpn. J. Appl. Phys., 52, 090001-1 - 13(2013). 

Describing Design concept and proposal of carrier doping rule in oxide semiconductors.  Best paper award from Applied Physics Society of Japan

3.    T.Kamiya, K.Nomura and H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater., 11, 044305-1 - 23 (2010).  

Comprehensive review on amorphous IGZO-TFTs.  The best paper award from STAM journal

4.    H.Hosono, How we made the IGZO transistor, Nat. Electron., 1, 428, (2018)

Describing a small story to invention of IGZO-TFTs

Papers

5.    H.Hosono, N.Kikuchi, N.Ueda, & H.Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples, Journal of Non-Crystalline Solids, 198, 165-169 (1996).

Proposal of Material design concept for TAOS with large mobility.

6.    M.Orita, H.Ohta, H., Hirano, S.Narushima, & H.Hosono, Amorphous transparent conductive oxide InGaO3 (ZnO) m (m≤ 4): a Zn4s conductor. Philosophical magazine B, 81(5), 501-515 (2001).  Amorphous IGZO as TCO

7.    S.Narushima, M. Orita, M. Hirano, M& H. Hosono,. Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2 CdO GeO 2, Physical Review B, 66(3), 035203 (2002).

    Verification of high mobility in TAOS by experiment and computation

8.    S.Narushima, H.Mizoguchi, K.Shimizu, K.Ueda, H.Ohta, M.Hirano, H.Hosono, A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p–n heterojunction diodes, Advanced Materials15(17), 1409-1413 (2003). First report on amorphous oxide p-n diode

9.    K.Nomura, H.Ohta, A.Takagi,T.Kamiya, M..Hirano, H.Hosono, Room-Temperature Fabrication of Transparent Flexible Thin Film Transistors Using Amorphous Oxide Semiconductors, Nature 432, 488(2004). 

     First report on a-IGZO-TFTs with high mobility along with design concept

10.    K.Nomura, H.Ohta, K.Ueda, T.Kamiya, M.Hirano, H.Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 (2003).  First report of crystalline IGZO-TFTs with mobility of ~80cm2/V

11.    H.Yabuta, M. Sano, K. Abe, T. Aiba, T Den, H.Kumomi, K.Nomura & H.Hosono, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Applied physics letters, 89(11), 112123 (2006).  RT sputtered-deposited a-IGZO-TFTs with 12cm2/Vs and on/off of 108

12.    Y.Ogo, H.Hiramatsu, K.Nomura, H.Yanagi, T.Kamiya, M. Hirano, and H.Hosono, P-channel thin-film transistor using p-type oxide semiconductor, SnO, Appl. Phys. Lett., 93, 032113 (2008). First report on p-channel oxide TFTs

13.    K.Nomura, T.Kamiya, H.Hosono, Ambipolar Oxide Thin-Film Transistor; Adv. Mater., 23, 3431 (2011).  First C-MOS Oxide-TFTs

14.    H.Kawazoe, M.Yasukawa, .Hyoudo, M.Kurita, H.Yanagi and H.Hosono, P-type Electrical Conduction in Transparent Thin Films of CuAlO2, Nature, 389, 939-942(1997). Design concept and example of transparent p-type oxide semiconductors

15.    Y-S. Shiah, K.Sim, Y.Shi, K.Abe, S.Ueda, M.Sasase, J.Kim, and H.Hosono: Mobility-stability trade-off in oxide thin-film transistors, Nature Electronics, 4, 800-807 (2021)  Elucidation of mobility-stability trade-off and realization of high mobility, stability oxide TFTs

16.    Junghwan Kim,Yu-Shien Shiah, Kihyung Sim, Soshi Iimura, Katsumi Abe, Masatake Tsuji, Masato Sasase, and Hideo Hosono: High-Performance P-Channel Tin Halide Perovskite Thin Film Transistor Utilizing a 2D–3D Core–Shell Structure, Advanced Science, 9, 2104993-1-10 (2022)

 

  3. Electrides

Invited Reviews

1.     Hideo Hosono, Masaaki Kitano: Advances in Materials and Applications of Inorganic Electrides, Chem. Rev., 121, 3121–3185 (2021).

Comprehensive reviews on materials, properties and chemical application of inorganic eletrides

2.     T.Inoshita, S.Saito, H. Hosono, Floating Interlayer and Surface Electrons in 2D Materials: Graphite, Electrides, and Electrenes. Small Science, 1(9), 2100020-1-23 (2021).  Reviewing electronic nature of floating electrons in 2D-electride, electrine and intercalated graphite

3.     S-W.Kim, H.Hosono, Synthesis and properties of 12CaO· 7Al2O3 electride: review of single crystal and thin film growth. Philosophical Magazine, 92. 2596-2628(2012)

Papers

4.     H.Hosono and Y.Abe, Occurrence of Superoxide Radical Ion in Crystalline 12CaO7Al2O3 Prepared via Solid-State Reactions, Inorg.Chem., 26, 1192(1987).
First report on clathrating unconventional anion species in C12A7

5.     S.Matsuishi, Y.Toda, M.Miyakawa, K.Hayashi, T.Kamiya, M.Hirano, I.Tanaka, H. Hosono, High-density electron anions in a nano-porous single crystal :[Ca24Al28O64]4+(4e-). Science 301, 626 (2003). Reporting a fist RT stable electride

6.     K.Hayashi, S.Matsuishi, T.Kamiya, M.Hirano, and H.Hosono, Light-induced conversion of refractory oxide into persistent electronic conductor, Nature, 419, 462 (2002).  Reporting insulator-conductor conversion in C12A7:H- by light illumination

7.     P.V. Sushko, A.L. Shluger, K.Hayashi, M.Hirano, H.Hosono, Electron Localization and a Confined Electron Gas in Nanoporous Inorganic Electrides, Physical Review Letters, 91,126401 (2003). Computational demonstration of cage conduction band in C12A7

8.     M. Miyakawa, S.W. Kim, M. Hirano, Y. Kohama, H. Kawaji, T. Atake, H. Ikegami, K. Kono, H. Hosono, Superconductivity in an Inorganic Electride 12CaO•7Al2O3:e-, J. Am. Chem. Soc. 129, 7270 (2007).
Discovery of electride superconductivity

9.     S-W.Kim, T.Shimoyama, H Hosono, Solvated Electrons in High-Temperature Melts and Glasses of the Room-Temperature Stable Electride [Ca24Al28O64]4+4e-; Science, 333, 71 (2011). Reporting metallic conduction in molten electride

10.     K.Lee, S-W.Kim, Y.Toda, S.Matsuishi, H. Hosono, Dicalcium nitride as a two-dimensional electride with an anionic electron layer, Nature, 494, 336 (2013).
 First report on 2-dimentional electride

11.     H.Hosono, J Kim, Y.Toda, T.Kamiya, and S. Watanabe: Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs; Proc. Natl. Acad. Sci. USA, 114(2), 233-238, (2017).

   Application of amorphous electride to OLEDs

12.     Inoshita, T., Jeong, S., Hamada, N., & Hosono, H., Exploration for two-dimensional electrides via database screening and ab initio calculation. Physical Review X, 4(3), 031023(2014).  

13.     Hirayama, M., Matsuishi, S., Hosono, H., & Murakami, S., Electrides as a new platform of topological materials. Physical Review X, 8(3), 031067(2018).

   Proposal of 2D electride as a platform for topological materials

14.     Wu, J., Li, J., Gong, Y., Kitano, M., Inoshita, T., & Hosono, H., Intermetallic electride catalyst as a platform for ammonia synthesis. Angewandte Chemie International Edition, 58(3), 825-829 (2019) report on intermetallic electride

15.     Hiroshi Mizoguchi, Sang-Won Park, Takayoshi Katase, Grigori V. Vazhenin, Junghwan Kim, and Hideo Hosono: Origin of metallic nature of Na3N, J. Am. Chem. Soc., 143, 69-72 (2021). First report on neutral electride

16.     Li, K., Gong, Y., Wang, J., & Hosono, H., Electron-Deficient-Type Electride Ca5Pb3: Extension of Electride Chemical Space. Journal of the American Chemical Society143(23), 8821-8828(2021).
First report of electron-surplus type electride

 

           4.  Catalysts for green ammonia synthesis

Reviews

1.    Hideo Hosono, Masaaki Kitano, Advances in Materials and Applications of Inorganic Electrides, Chem. Rev., 121, 3121-3185 (2021).

Papers

2.    M.Kitano, Y.Inoue, Y.Yamazaki, F.Hayashi, S.Kanbara, S.Matsuishi, T.Yokoyama, S-W Kim, M. Hara, H.Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem., 4, 934 (2012).  First report on electride catalyst for ammonia synthesis

3.    Masaaki Kitano, Yasunori Inoue, Hiroki Ishikawa, Kyosuke Yamagata, Takuya Nakao, Tomofumi Tada, Satoru Matsuishi, Toshiharu Yokoyama, Michikazu Hara, and Hideo Hosono: Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts; Chem. Sci., 7, 4036-4043, (2016).

Demonstrating critical role of anionic electron-hydrogen exchange

4.    Y.Gong, J.Wu, M.Kitano, J. Wang, T.N.Ye, T. J.Li, and H.Hosono, Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nature Catalysis, 1(3), 178-185 (2018). 
Ru-free Intermetallic electride catalysts

5.    M.Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. Sushko, T. Yokoyama, M. Hara & H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nature communications, 6(1), 1-9(2015). Elucidating NN dissociation

6.    Y.Lu, J. Li, J., T.Tada, Y.Toda, T.Ueda, M.Yokoyama, M.Kitano and H.Hosono, Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. Journal of the American Chemical Society, 138(12), 3970-3973(2016).
Reporting first 1D intermetallic electride

7.    J.Wu,Y.Gong, T. Inoshita, T., Fredrickson, D. C., Wang, J., Lu, Y., M.Kitano & Hosono, Tiered electron anions in multiple voids of LaScSi and their applications to ammonia synthesis. Advanced Materials, 29(36), 1700924(2017).

Verification of critical role of electride nature in intermetallics for NH3 synthesis catalyst

8.    M.Kitano, Y. Inoue, M. Sasase, K.Kishida, Y. Kobayashi, K. Nishiyama, & H.Hosono, Selforganized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient LowTemperature Ammonia Synthesis. Angewandte Chemie, 130(10), 2678-2682(2018).

Record high activity

9.    T.N.Ye, S.W.Park, Y.Lu, J.Li, M.Sasase, M.Kitano, & H.Hosono, Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 583(7816), 391-395(2020). Novel approach beyond scaling rule utilizing N2 activation with surface electride

10.    H.Hosono, Electron transfer from support/promotor to metal catalyst: Requirements for effective support. Catalysis Letters, 152(2), 307-314(2022).  Invited perspective describing requirements for support of catalyst for reactions involving electron transfer process as the rate determining step

11.    Yutong Gong, Hongchen Li, Can Li, Xueqing Yang, Junjie Wang, and Hideo Hosono, LaRuSi Electride Disrupts the Scaling Relations for Ammonia Synthesis: Chemistry of Materials, 34, 1677-1685(2022).

 

     5. Hydride-based functional materials

1.     Hayashi, K., Hirano, M., & Hosono, H., Thermodynamics and Kinetics of Hydroxide Ion Formation in 12CaO7Al2O3. The Journal of Physical Chemistry B, 109(24), 11900-11906.

2.     Hayashi, K., Sushko, P. V., Shluger, A. L., Hirano, M., & Hosono, H. (2005). Hydride Ion as a Two-Electron Donor in a Nanoporous Crystalline Semiconductor 12CaO·7Al2O3. The Journal of Physical Chemistry B, 109(50), 23836-23842(2005).

3.     Matsuishi, S., Hayashi, K., Hirano, M., & Hosono, H., Hydride ion as photoelectron donor in microporous crystal. Journal of the American Chemical Society, 127(36), 12454-12455(2005).

4.     Sushko, P. V., Shluger, A. L., Hayashi, K., Hirano, M., & Hosono, H., Photoinduced generation of electron anions in H-doped nanoporous oxide 12 CaO∙7Al2O3: Toward an optically controlled formation of electrides. Applied physics letters, 86(9), 092101(2005).

5.     Fukui, K., Iimura, S., Tada, T., Fujitsu, S., Sasase, M., Tamatsukuri, H., ... & Hosono, H., Characteristic fast H− ion conduction in oxygen-substituted lanthanum hydride. Nature communications, 10(1), 1-8(2019).

6.     Miyakawa, M., Hayashi, K., Hirano, M., Toda, Y., Kamiya, T., & Hosono, H., Fabrication of highly conductive 12CaO·7Al2O3 thin films encaging hydride ions by proton implantation. Advanced materials, 15(13), 1100-1103(2003).

7.     Hayashi, K., Toda, Y., Kamiya, T., Hirano, M., Yamanaka, M., Tanaka, I., ... & Hosono, H., Electronic insulator-conductor conversion in hydride ion-doped 12CaO∙7Al2O3 by electron-beam irradiation. Applied Physics Letters, 86(2), 022109(2005).

8.     Bang, J., Matsuishi, S., & Hosono, H., Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Applied Physics Letters, 110(23), 232105(2017).

9.     Bang, J., Matsuishi, S., Hiraka, H., Fujisaki, F., Otomo, T., Maki, S., ... & Hosono, H., Hydrogen ordering and new polymorph of layered perovskite oxyhydrides: Sr2VO4–x H x. Journal of the American Chemical Society, 136(20), 7221-7224(2014).

10.    Keiga Fukui, Soshi Iimura, Albert Iskandarov, Tomofumi Tada, and Hideo Hosono, Room-Temperature Fast H– Conduction in Oxygen-Substituted Lanthanum Hydride, Journal of the American Chemical Society, 144(4), 1523-1527(2022).

11.     Albert Iskandarov, Tomofumi Tada, Soshi Iimura, and Hideo Hosono, Characteristic mechanism for fast H− conduction in LaH2.5O0.25, Acta Materia, 230, 117825(2022).

 

   6. Structure Defect and properties of SiO2 glass

Review

1.     H.Hosono, Chemical interaction in ion-implanted amorphous SiO2 and application to formation and modification of nanosized colloid particles. Journal of non-crystalline solids, 187, 457-472 (1995). Reviewing effects of ion-implantation on structure and properties of SiO2 glass

Papers

2.     H.Hosono & R.A.Weeks, Structural defects in chromium-ion-implanted vitreous silica. Physical Review B, 40(15), 10543(1989).

3.     H.Hosono, Y.Abe, H. Imagawa, H.Imai, & K.Arai, Experimental evidence for the Si-Si bond model of the 7.6-eV band in SiO2  glass. Physical Review B, 44(21), 12043(1991).

4.     H.Hosono, Y.Abe, D.Kinser, R.A.Weeks, K.Muta, & H.Kawazoe, Nature and origin of the 5-eV band in SiO2:GeO2 glasses. Physical Review B, 46(18), 11445(1992).

5.     H.Hosono, Importance of Implantation Sequence in the Formation of Nanometer Size Colloid Particles Embedded in Amorphous SiO2 : Formation of Composite Colloids with Cu Core and a Cu2O Shell by Coimplantation of Cu and F. Physical review letters, 74(1), 110(1995).

6.     H.Hosono, Y. Ikuta, T. Kinoshita, K.Kajihara, & M.Hirano, Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2. Physical review letters, 87(17), 175501(2001).

7.     H.Hosono, H.Kawazoe, & N.Matsunami, Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation. Physical Review Letters, 80(2), 317 (1998).

8.     H.Hosono, Fourier transform infrared attenuated total reflection spectra of ion-implanted silica glasses. Journal of applied physics, 69(12), 8079-8082 (1991).

9.     H.Hosono, M.Mizuguchi, L Skuja, & T.Ogawa, Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation. Optics letters, 24(22), 1549-1551 (1999).

10.     T.Suzuki, L.Skuja, K. Kajihara, M.Hirano, T.Kamiya & H.Hosono, Electronic Structure of Oxygen Dangling Bond in Glassy SiO2: The Role of Hyperconjugation. Physical Review Letters, 90(18), 186404 (2003).

 

     7.   Photonic Glass and devices

Invited Review

Funabiki, F., Kamiya, T., & Hosono, H., Doping effects in amorphous oxides. Journal of the Ceramic Society of Japan, 120(1407), 447-457(2012).

 JCSJ Paper Award

Papers

1.     Hosono, H., Asada, N., & Abe, Y., Properties and mechanism of photochromism in reduced calcium aluminate glasses. Journal of Applied Physics67(6), 2840-2847(1990).

2.     Hosono, H., Kinoshita, T., Kawazoe, H., Yamazaki, M., Yamamoto, Y., & Sawanobori, N., Long lasting phosphorescence properties of Tb-activated reduced calcium aluminate glasses. Journal of Physics: Condensed Matter, 10(42), 9541 (1998).

3.     Kawamura, K., Ogawa, T., Sarukura, N., Hirano, M., & Hosono, H., Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Applied Physics B, 71(1), 119-121(2000).

4.     Kawamura, K. I., Sarukura, N., Hirano, M., & Hosono, H., Holographic encoding of permanent gratings embedded in diamond by two beam interference of a single femtosecond near-infrared laser pulse. Japanese Journal of Applied Physics, 39(8A), L767 (2000).  JJAP論文賞

5.     Kawamura, K. I., Hirano, M., Kurobori, T., Takamizu, D., Kamiya, T., & Hosono, H., Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals. Applied Physics Letters, 84(3), 311-313(2004).

6.     Kawamura, K. I., Otsuka, T., Hirano, M., Kamiya, T., & Hosono, H., Development of latent images due to transient free carrier electrons by femtosecond laser pulses and its application to grating shape trimming. Applied physics letters, 90(1), 011107(2007).

7.     Ohta, H., Kawamura, K. I., Orita, M., Hirano, M., Sarukura, N., & Hosono, H., Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO. Applied Physics Letters, 77(4), 475-477 (2000).

First LED based on oxide semiconductors

 

      8. Electron spin resonance

Papers

1.        Hosono, H., Kawazoe, H., Nishil, J., & Kanazawa, T., Detection and analysis of anisotropic thallium (2+) centers in glass. The Journal of Physical Chemistry, 86(2), 161-164(1982).

2.        Hosono, H., Kawazoe, H., Nishii, J., & Kanazawa, T. (1981). Effect of Randomness on the ESR hyperfine structure of Cd+. Journal of Non-Crystalline Solids, 44(1), 149-155.

3.        Matsuishi, S., Hayashi, K., Hirano, M., Tanaka, I., & Hosono, H. (2004). Superoxide Ion Encaged in Nanoporous Crystal 12CaO·7Al2O3 Studied by Continuous Wave and Pulsed Electron Paramagnetic Resonance. The Journal of Physical Chemistry B, 108(48), 18557-18568.

 

        9. Functional Glass and Ceramics

Review

1.     Hosono, H., & Abe, Y. (1995). Porous glass-ceramics composed of a titanium phosphate crystal skeleton: a review. Journal of non-crystalline solids190(3), 185-197.

Papers

2.        Hosono, H., Zhang, Z., & Abe, Y. (1989). Porous GlassCeramic in the CaOTiO2P2O5 System. Journal of the American Ceramic Society, 72(9), 1587-1590.

3.    Hosono, H., & Abe, Y. (1992). Porous Glass-Ceramics with a Skeleton of the Fast-Lithium-Conducting Crystal Li1+xTi2− xAlx (PO4). Journal of the American Ceramic Society, 75(10), 2862-2864.

4.        Kim, S., Miyakawa, M., Hayashi, K., Sakai, T., Hirano, M., & Hosono, H. (2005). Simple and efficient fabrication of room temperature stable electride: melt-solidification and glass ceramics. Journal of the American Chemical Society, 127(5), 1370-1371.

5.        Hosono, H., Tsuchitani, F., Imai, K., Abe, Y., & Maeda, M. (1994). Porous glass-ceramics cation exchangers: Cation exchange properties of porous glass-ceramics with skeleton of fast Li ion-conducting LiTi2 (PO4)3 crystal. Journal of materials research, 9(3), 755-761.

6.        Hosono, H., Kawamura, K. I., Kawazoe, H., Matsunami, N., & Abe, Y. (1997). Fast proton conducting glasses: Creation by proton implantation and a requirement for fast proton conduction. Journal of applied physics, 81(3), 1296-1301.

7.        Hosono, H., Kamae, T., & Abe, Y. (1989). Electrical conduction in magnesium phosphate glasses containing heavy water. Journal of the American Ceramic Society, 72(2), 294-297.

8.        Hayashi, K., Muramatsu, H., Matsuishi, S., Kamiya, T., & Hosono, H. (2008). Humidity-Sensitive Electrical Conductivity in Ca12Al14− x SixO32Cl2+ x (0 x 3.4) Ceramics. Electrochemical and Solid-State Letters, 12(2), J11.

9.        Shingo Urata, Nobuhiro Nakamura, Tomofumi Tada, Aik Rui Tan, Rafael Gómez-Bombarelli, and Hideo Hosono, JA;mso-bidi-language:AR-SA'>Suppression of Rayleigh Scattering in Silica Glass by Codoping Boron and Fluorine: Molecular Dynamics Simulations with Force-Matching and Neural Network Potentials,. J. Phys. Chem. C 126, 4, 2264–2275(2022).









contents